47 research outputs found

    Predictors of Ips confusus Outbreaks During a Record Drought in Southwestern USA: Implications for Monitoring and Management

    Get PDF
    In many ecosystems the effects of disturbance can be cryptic and disturbance may vary in subtle spatiotemporal ways. For instance, we know that bark beetle outbreaks are more frequent in temperate forests during droughts; however, we have little idea about why they occur in some locations and not others. Understanding biotic and abiotic factors promoting bark beetle outbreaks can be critical to predicting and responding to pest outbreaks. Here we address the environmental factors which are associated with Ips confusus outbreaks during the 2002 widespread drought within the distribution range of pinyon pine woodlands in Arizona. We used univariate statistics to test if whether tree characteristics, other herbivores, stand properties, soil type, wind, and topography were associated with I. confusus outbreak, and logistic regression to create a predictive model for the outbreaks. We found that I. confusus attacks occur in low elevation stands on steeper slopes, where favorable winds for I. confusus dispersion occur. I. confusus select larger trees, in high density stands with understory shrubs that exhibit phenotypic traits characteristic of resistance to stem-boring moths. The model was highly accurate, and explained 95% of the variability in occurrence (98% of the absences and 95% of the presences). Accurate prediction of the impacts of disturbance allow us to anticipate, minimize or mitigate for and eventually counteract its effects, especially those affecting diversity and ecosystem function. Identification of outbreak risk areas can guide regional and national management towards the reduction of infestation risk and enhancing conservation of pinyon-juniper woodlands

    Granger Causality Analysis of Steady-State Electroencephalographic Signals during Propofol-Induced Anaesthesia

    Get PDF
    Changes in conscious level have been associated with changes in dynamical integration and segregation among distributed brain regions. Recent theoretical developments emphasize changes in directed functional (i.e., causal) connectivity as reflected in quantities such as ‘integrated information’ and ‘causal density’. Here we develop and illustrate a rigorous methodology for assessing causal connectivity from electroencephalographic (EEG) signals using Granger causality (GC). Our method addresses the challenges of non-stationarity and bias by dividing data into short segments and applying permutation analysis. We apply the method to EEG data obtained from subjects undergoing propofol-induced anaesthesia, with signals source-localized to the anterior and posterior cingulate cortices. We found significant increases in bidirectional GC in most subjects during loss-of-consciousness, especially in the beta and gamma frequency ranges. Corroborating a previous analysis we also found increases in synchrony in these ranges; importantly, the Granger causality analysis showed higher inter-subject consistency than the synchrony analysis. Finally, we validate our method using simulated data generated from a model for which GC values can be analytically derived. In summary, our findings advance the methodology of Granger causality analysis of EEG data and carry implications for integrated information and causal density theories of consciousness

    Differential Response to Soil Salinity in Endangered Key Tree Cactus: Implications for Survival in a Changing Climate

    Get PDF
    Understanding reasons for biodiversity loss is essential for developing conservation and management strategies and is becoming increasingly urgent with climate change. Growing at elevations <1.4 m in the Florida Keys, USA, the endangered Key tree cactus (Pilosocereus robinii) experienced 84 percent loss of total stems from 1994 to 2007. The most severe losses of 99 and 88 percent stems occurred in the largest populations in the Lower Keys, where nine storms with high wind velocities and storm surges, occurred during this period. In contrast, three populations had substantial stem proliferation. To evaluate possible mortality factors related to changes in climate or forest structure, we examined habitat variables: soil salinity, elevation, canopy cover, and habitat structure near 16 dying or dead and 18 living plants growing in the Lower Keys. Soil salinity and elevation were the preliminary factors that discriminated live and dead plants. Soil salinity was 1.5 times greater, but elevation was 12 cm higher near dead plants than near live plants. However, distribution-wide stem loss was not significantly related to salinity or elevation. Controlled salinity trials indicated that salt tolerance to levels above 40 mM NaCl was related to maternal origin. Salt sensitive plants from the Lower Keys had less stem growth, lower root:shoot ratios, lower potassium: sodium ratios and lower recovery rate, but higher δ 13C than a salt tolerant lineage of unknown origin. Unraveling the genetic structure of salt tolerant and salt sensitive lineages in the Florida Keys will require further genetic tests. Worldwide rare species restricted to fragmented, low-elevation island habitats, with little or no connection to higher ground will face challenges from climate change-related factors. These great conservation challenges will require traditional conservation actions and possibly managed relocation that must be informed by studies such as these

    MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial injury and extensive inflammation of the pulmonary parenchyma. Systematic analyses of microRNA (miRNA) and mRNA expression profiling in ARDS provide insights into understanding of molecular mechanisms of the pathogenesis of ARDS. The objective of this study was to identify miRNA and mRNA interactions in a rat model of ARDS by combining miRNA and mRNA microarray analyses.Methods: Rat model of ARDS was induced by saline lavage and mechanical ventilation. The expression profiles of both mRNAs and miRNAs in rat ARDS model were performed by microarray analyses. Microarray data were further verified by quantitative RT-PCR. Functional annotation on dys-regulated mRNAs and miRNAs was carried out by bioinformatics analysis.Results: The expression of 27 miRNAs and 37 mRNAs were found to be significantly changed. The selected miRNAs and genes were further verified by quantitative real-time PCR. The down-regulated miRNAs included miR-24, miR-26a, miR-126, and Let-7a, b, c, f. The up-regulated miRNAs were composed of miR-344, miR-346, miR-99a, miR-127, miR-128b, miR-135b, and miR-30a/b. Gene ontology and functional annotation analyses indicated that up-regulated mRNAs, such as Apc, Timp1, and Sod2, were involved in the regulation of apoptosis. Bioinformatics analysis showed the inverse correlation of altered miRNAs with the expression of their predicted target mRNAs. While Sod2 was inversely correlated with Let-7a, b, c, f., Ebf1 and Apc were inversely correlated with miR-24 and miR-26a, respectively. miR-26a, miR-346, miR-135b, miR-30a/b, miR-344, and miR-18a targeted multiple altered mRNAs. Gabrb1, Sod2, Eif2ak1, Fbln5, and Tspan8 were targeted by multiple altered miRNAs.Conclusion: The expressions of miRNAs and mRNAs were altered in a rat model of ARDS. The identified miRNA-mRNA pairs may play critical roles in the pathogenesis of ARDS.Peer reviewedPathobiologyOklahoma Center for Respiratory and Infectious DiseasesPhysiological Science
    corecore